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A B S T R A C T   

The use of multimodal medical imaging is on the rise, both in academic and clinical settings. There was a 
meteoric growth in the use of multimodal imaging analysis (MIA) with the addition of ensemble learning 
techniques, which had particular advantages in the medical field. We provide an algorithmic framework that 
allows supervised MIA and Cross-Modality Fusing at the preprocessing phase algorithms for classification and 
decision-making levels, drawing inspiration from the current triumphs of deep learning approaches in medical 
imaging. We presented a method for picture segmentation that makes use of sophisticated convolutional neural 
networks to identify lesions produced by tumors in soft tissues. To do this, MRI tomography and PET scans are 
combined to provide multi-modal images. Networks trained with multimodal images outperform their single- 
modal counterparts. When it relates to tumor segmentation, fusing photos throughout the neural network (i. 
e., within the convolutional layer or totally connected layers) yields better results than photographs that merge 
the network’s output. The proposed approach employs four pre-trained models, specifically VGG 19, ResNet 50, 
SqueezeNet, as well as DenseNet 121. Using a dataset of ISL images, the pre-trained models are fine-tuned. 
Subsequently, the ensemble learning technique is employed to combine the predictions generated by the three 
models. Here, ensemble is based on a weighted voting method. Impressive results were obtained with the pro
posed ensemble method: 98.1% accuracy, 97.5% F1 score, and 90.8% Kappa score. The ensemble method 
outperformed individual models and existing approaches for multimodal medical fusion and classification, with a 
Jaccard score of 93.8% and a recall of 98.2% demonstrate its effectiveness for multimodal medical fusion and 
classification.   

1. Introduction 

Most initial brain tumors are gliomas, and brain tumors are among 
the worst diseases ever. Brain tumor classification facilitates diagnosis 
by serving as a treatment guide as well as offering acquisition in
struments for medical imaging that integrates different modalities for 
brain tumor categorization. Thus, prior research has used either 2D 

brain MRI image slicing or 3D brain images fused to accomplish this goal 
[1]. Decline in cognitive abilities and memory loss are symptoms of 
Alzheimer’s disease, a neurological illness. Because they provide a 
broader view of the brain changes that define Alzheimer’s disease, 
multimodal imaging techniques have been more popular for use in the 
diagnosis of the disease in recent years. This is because these approaches 
allow doctors to better monitor the progression of the illness over time. 
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Because it integrates information from several types of imaging into a 
unified, more interpretable whole, medical image fusion is vital [2]. By 
supplementing medical pictures from many modalities, multi-modal 
image fusion methods help doctors make more accurate diagnoses. 
These methods improve the efficiency of medical condition analysis and 
result categorization [3]. With the advancement of medical image pro
cessing, picture fusion has become a practical option, automatically 
combining several pictures into one by extracting pertinent data. The 
identification and classification of brain tumors rely heavily on medical 
imaging methods like Magnetic Resonance Imaging, Computed To
mography, etc. Accurate disease diagnosis requires more than just one 
imaging approach [4]. Global Health Organization glioma classification 
system for 2021 states that glioma segmentation is a crucial foundation 
for genotype prediction and diagnosis. 3D multimodal magnetic reso
nance imaging of the brain is a useful diagnostic tool. Machine learning 
and deep learning in particular, have seen a surge in use for analyzing 
medical pictures within the last decade. Models pre-trained using large- 
scale datasets provide superior performance on a number of tasks [5]. 
This is all down to the creation of foundation models. In order to 
maximize yields and ensure healthy crop development, it is vital to 
identify illnesses in rice plants. The establishment of mitigation mea
sures to provide large-scale food security and affordable rice crop pro
tection may be aided by a real-time and precise plant disease detection 
system. Achieving site-specific use of agrochemicals might be made 
possible with a precise categorization of diseases of rice plants utilizing 
DL and computer vision. Using image research techniques efficiently 
allows for ongoing surveillance of plant health state and early identifi
cation of plant illnesses [6]. Recognizance, segmentation, as well as 
classification from RGB pictures are just a few of the computer vision 
tasks that typically use deep learning approaches. An assortment of 
sensors allows for the collection of industry-specific datasets, which in 
turn allow for the resolution of industry-specific problems. There is a 
wide range of modalities in the gathered datasets, suggesting that each 
picture has its own unique collection of channel number and pixel 
values. A complex technique is required to use deep learning algorithms 
on these multimodal data in order to get optimum results [7]. In order to 
better evaluate patients, guide treatment, treat them, or anticipate their 
results, multimodal medical image fusion efficiently integrates many 
imaging modalities. Because image fusion provides more crucial infor
mation, the accuracy of the combined picture from many medical im
aging modalities greatly affects the prognosis for a disease. It is 
impossible to get comprehensive and accurate results from only one 
medical imaging modality [8]. When it comes to diagnosing medical 
issues, multimodal picture fusion using deep learning approaches has 
recently gained popularity. Unlike traditional approaches, deep learning 
techniques accomplish the fusion in the intermediate stages of deep 
neural networks. This allows for the implicit alignment of several visual 
modalities at the semantic level, bypassing the need for spatial align
ment. As a result, many question the significance of spatial alignment 
during deep learning fusion [9]. The development of multimodal im
aging methods for medicine has greatly aided advancements in clinical 
diagnosis and etiological analysis. The merging of multimodal medical 
pictures may provide a viable alternative to the inherent limitations of 
individual medical imaging modalities [10]. Improved accuracy as well 
as efficiency in clinical diagnoses can be achieved through multimodal 
medical image fusion, which entails combining medical images obtained 
by different sensors with the goal of improving image quality, reducing 
redundant information, and preserving specific features. Recent years 
have seen tremendous progress in picture fusion thanks to the advent of 
deep learning algorithms, which overcome the drawbacks of traditional 
approaches that need human intervention in the design of level of ac
tivity assessment as well as fusion rules [11]. For pixel-level medical 
picture fusion, a new sparse representation model called convolutional 
sparsity oriented morphological component evaluation is presented. 
Through the integration of multicomponent analysis as well as con
volutional sparse representation, the CS-MCA model is able to 

accomplish both global and multicomponent SRs of the input pictures. 
Using pre-learned dictionaries, the CSMCA model in the current tech
nique obtains the CSRs of the gradient and texture components [12]. 
Ultrasonography is a crucial imaging tool for evaluating breast lesions. 
The use of computer-aided diagnostic technology has greatly improved 
radiologists’ ability to differentiate between benign and malignant tu
mors through automatically segmenting and detecting their features 
[13]. Numerous clinical contexts made extensive use of MMIF techni
ques. In order to aid in the development of diagnostic techniques, MMIF 
has the potential to provide a picture that contains anatomical and 
physiological information. Earlier, other models were suggested that 
were associated with MMIF. Prior approaches would need to have their 
functionality improved, albeit [14]. Because of its versatile nature, 
Multimodal sentiment evaluation is quickly becoming a popular tool. 
Effectively managing social media information with many modalities is 
challenging, as previous research has concentrated on SA of single 
methods, such texts or photographs. The majority of multimodal studies 
have failed to adequately address the complex interactions between the 
two modalities, leading to unsatisfactory results in sentiment classifi
cation [15].(See Tables 1 and 2). 

The progressive and fatal brain disorder known as Alzheimer’s Dis
ease (AD) causes memory and cognition to deteriorate over time. 
However, deep-learning algorithms have shown potential in treating 
this neurodegenerative illness, which causes brain damage and mental 
degradation. The paper’s main contribution is the creation of an algo
rithmic framework for multimodal medical image analysis (MIA) and 
classification that makes use of deep learning and ensemble learning 
methods. The inclusion of advanced convolutional neural networks, 
such as VGG 19, ResNet 50, SqueezeNet, and DenseNet 121, which have 
been optimized using ISL image data, is innovative and results in better 
performance. Applications of deep learning techniques include diag
nostic decision assistance and pattern detection in medical images. 
Transfer learning, in which an established model is applied to a new 
task, could be very helpful when resources are few. The implementation 
of transferred learning has enabled the accurate diagnosis of AD. Data 
and MRI scans from Alzheimer’s disease (AD) patients and healthy 
controls are processed using a mix of deep-transfer learning and bespoke 
models in this job. Clinical data characteristics are extracted using a two- 
layer fully connected network, whereas properties for input axial slices 
of magnetic resonance imaging (MRI) are obtained using SqueezeNet, 
ResNet 50, VGG 19, and DenseNet 121. During fivefold cross-validation, 
this results in a categorization accuracy of 99.65 % in both AD and NC. 

The rest of this paper is organized as follows.In Section II, pertinent 
research using deep learning to segment brain tumors is reviewed. The 
research problem is outlined in Section III. Our suggested multimodal 
approaches and group Transfer Learning (TL) approach are described in 
Section IV. Extensive details, debate, and performance rating are pro
vided in Section V. Section VI concludes with several recommendations 
and directions for future research. 

2. Related work 

This work explores the possibility of integrating MRI and PET data 
using Pareto optimal deep learning approaches. It does this by using pre- 
existing models from the Visual Geometry Group, including VGG11, 
VGG16, and VGG19 architectures [16]. When working with MRI and 
PET images, morphological operations may be carried out using Analyze 
14.0. Next, the PET images are adjusted to the correct angle with the 
help of GIMP and then compared to the MRI scans. Improving the net
work’s performance before image fusion is done through the addition of 
a transposed convolution component to the previously recovered feature 
maps. During that stage, features maps with the fusion weights that are 
necessary for fusion are constructed. The study’s objective is to compare 
three VGG models’ capacity to glean relevant features from PET and MRI 
images. Pareto optimization is used to optimize the model’s hyper
parameters. For this purpose, we use the Architectural Similarities Index 
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Technique in conjunction with E, SSIM, PSNR, MSE, as well as E to assess 
the models’ operation on the ADNI dataset. The aforementioned fusion 
method makes use of an image fusion methodology that is based on a 
Siamese Neural Network and Entropy [17]. The fusion procedure is 
based on the entropy of a picture and the score of the SoftMax layer. In 
the end, the image is completed using Otsu Thresholding and Quick 
Fuzzy C Means Clusters Algorithms. Lastly, the segmented areas are used 
to extract a variety of attributes. A Logistic Regression classifier is used 
to do classification based on the characteristics that have been retrieved. 
The evaluation is conducted using a benchmark dataset that is accessible 
to the public. Results from experiments with several sets of medical 
pictures show that the suggested methods for fusing and classifying 
multi-modal images may hold their own against the current best prac
tices described in the literature. Multimodal fusion with Principal 
Component Analysis is suggested in [18]. Once they get the fused output 
from multimodal fusion, they may utilize it to execute tumor classifi
cation and segmentation. That approach utilizes a CNN for classification 
with Otsu thresholding for tumor segmentation. All of the analysis for 
the brain tumor was done using the MATLAB App designer. Both 
numerically and qualitatively, the approach beats competing tech
niques, according to the experimental data. A new approach to auto
mated brain tumor detection and classification utilizing multi-modal 
deep neural networks is described in [19]. At the outset, the suggested 
AMDL-BTDC model employs the bilateral filtering method to pre- 
process images. After that, authors use two pre-trained deep learning 
models, SqueezeNet and EfficientNet, to create feature vectors. To find 
the best hyperparameter values for the DL models, the Slime Mold Al
gorithms is used. Once the features have been fused, the last step in BT 
classification is to employ an auto encoder model. Thorough testing on a 
standard medical imaging datasets confirmed that the proposed model 
outperformed competing methods across a variety of metrics. For even 
more precise breast cancer categorization, see [20] for instructions on 
how to combine pathology pictures with structured data retrieved from 
clinical EMR. The authors of the research provide a new and improved 
fusion network for classifying benign and aggressive breast cancers 
using multimodal data. A more comprehensive multilevel feature 
description of the ill picture might be extracted from several convolu
tional layers, according to researchers’ suggested technique, which 
would enhance its integration with unstructured EMR data. Instead of 
decreasing the dimensionality of the highly dimensional picture data to 
low-dimensional prior data fusion, they employ the denoising auto 

encoder to raise the size of the low-dimensional organized EMR data in 
order to decrease data loss for each modality. Furthermore, denoising 
autoencoder essentially broadens their method to accurately forecast 
structured EMR data that is partly missing. With an average rate of 
classification of 92.9 %, the suggested technique outperforms the state- 
of-the-art method, according to the testing results. With the goal of 
enhancing interpretability and guiding architecture selection, the au
thors of [21] provide a new technique for multimodal artificial neural 
networks that is based on gradients of feature significance. They build a 
validation system to set performance baselines; it mimics test scenarios 
and compares their feature importance approach’s performance to 
ground truth; that allows us to show their technique. In the architec
ture’s post-fusion phase, the gradient based approach for feature sig
nificance is used to get feature importance values for deep features. After 
that, we may calculate the significance for every multimodal input by 
summing the importances of every mode. The 58,830 medMNIST 
abdomen CT scans and generated clinical data are used to train their 
sample program. With that study, they have made a significant step 
toward making deep learning approaches more interpretable by esti
mating the relevance of features in multimodal machine learning 
models. In [22], the authors present a new CAD system that uses 
multimodal magnetic resonance imaging and a deep-learning architec
ture to identify thyroid nodules that may be malignant. In particular, 
their system is designed to fuse two MRI modalities—the apparent 
diffusion coefficient map and the diffusion weighted image—through 
the use of a multi-input CNN. Their system’s primary contribution is 
multi-faceted. Three things stand out about that system: (1) it is the first 
of its kind to use CNN for classification purposes in thyroid DWI and ADC 
images; (2) it improves the likelihood of finding deep texture things in 
thyroid tumors by allowing for separate convolutional procedures for 
the DWI and ADC images; (3) it opens the door to integration via other 
imaging modalities as well as additional MRI scans by allowing for the 
addition of additional channels to each input. They compared their 
method to other fusion techniques and ML framework that use charac
teristics that are hand-crafted. Their algorithm was superior than the 
others, with a diagnostic success rate of 0.88, a precision of 0.82, with a 
recall of 0.82. Optimizing Sea Horses with Deep Learning-Based Im
provements An technique reported in the literature [23] is acronymed as 
ESHODL-MFRPDC, which stands for Multimodal fusion for the Diagnosis 
and Categorization of Rice Plant Diseases. Utilizing a DL-based fusion 
technique with a hyperparameter tuning approach, the suggested 

Table 1 
Performance Analysis of Proposed vs. Existing Works.   

Ordinary gray image Reconstructed gray scale image 

Accuracy F1 score Kappa Jaccard Recall Accuracy F1 score Kappa Jaccard Recall 

SqueezeNet11  0.764  0.751  0.692  0.632  0.770  0.795  0.780  0.731  0.657  0.796 
VGG19  0.752  0.738  0.683  0.618  0.759  0.878  0.885  0.845  0.792  0.891 
ResNet 50  0.789  0.793  0.732  0.656  0.789  0.920  0.919  0.889  0.853  0.921 
DenseNet 121  0.792  0.791  0.725  0.661  0.795  0.890  0.887  0.851  0.814  0.894 
Ensemble  0.981  0.975  0.908  0.938  0.982  0.9880  0.964  0.931  0.97  0.98  

Table 2 
Augmentation Result.  

Methods Augmentation Accuracy F1 score Kappa Jaccard Recall 

SqueezeNet 1_1 No  0.816  0.817  0.738  0.687  0.817 
Yes  0.892  0.891  0.865  0.815  0.891 

Vgg 19 No  0.741  0.731  0.618  0.596  0.739 
Yes  0.921  0.916  0.885  0.831  0.909 

ResNet 50 No  0.759  0.759  0.667  0.651  0.768 
Yes  0.923  0.912  0.892  0.857  0.911 

DenseNet 121 No  0.821  0.818  0.741  0.702  0.810 
Yes  0.911  0.929  0.891  0.851  0.923 

Ensemble No  0.921  0.918  0.947  0.902  0.91 
Yes  0.957  0.945  0.998  0.95  0.97  
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method enhances disease diagnosis in rice plants. During the pre
processing stage, the ESHODL-MFRPDC technique utilized Bilateral 
Filtering to eliminate noise and enhance contrast. Furthermore, the 
impacted regions in the leaf image were identified using Mayfly Opti
mization (MFO) segments using Multi-Level Thresholding. Three DL 
models—Xception, residual network (ResNet50), as well as NAS
Net—were used in the feature extraction procedure. The hyper
parameters of the Quasi-Recurrent neural networks used to detect 
diseases in rice plants were established using the ESHO method. They 
checked the ESHODL-MFRPDC method’s accuracy using the UCI data
base’s dataset on rice leaf diseases. In a thorough comparison investi
gation, the proposed technique performed better than others. One 
workable solution to the problem mentioned in [24] is to use a data 
fusion method. Data fusion searches for the optimal solution by using 
and integrating all of the sensor data that is available. The research looks 
at three different forms of fusing in deep learning models—early, me
dium, and late—to categorize pictures of big rubbish. The model 
development and assessment methods both make use of multimodal 
datasets. The data set contains images of big garbage cans taken using 
thermal photography, terahertz, hyper spectra near infrared, and RGB 
cameras. The results show that compared to a single-sensor technique, 
multimodal sensor fusion enhances classification accuracy when applied 
to the provided dataset. The article [25] suggests a new way to fuse 
multimodal medical pictures using ELM and CNN. More and more 
people are turning to CNN in image processing since it is a classic 
example of deep learning. Nevertheless, CNN often encounters a number 
of limitations, including significant computational expenses and exten
sive human involvement. Therefore, by combining ELM with the con
ventional CNN model, the convolutional extreme machine learning 
model is built. To extract along with capture the characteristics of the 
source photos from multiple perspectives, CELM is an essential tool. It is 
possible to get the final fused image by integrating the key features. In 
addition to outperforming state-of-the-art methods on objective metrics 
and subjective visual performance, testing findings show that the sug
gested method enhances lesion identification and localization accuracy. 
Before reviewing the features and roles of various fusion modalities and 
outlining their interrelationships, the article [26] provides a compre
hensive explanation of the multimodal medical picture fusion challenge. 
In order to provide a thorough overview of the latest advancements in 
medical image fusion from a deep learning standpoint, it then examines 
the theories and improvement methods linked to deep learning in that 
area. Among these advancements are unified models, methods for 
multimodal feature extraction using convolutional approaches, methods 
for signal processing based on convolutional sparse representation as 
well as stacked autoencoders, and methods based on adversarial 
learning. Finally, the article provides a concise overview of the strategies 
used to improve multimodal medical picture fusion, drawing attention 
to the serious problems and obstacles that deep learning approaches 
have in that field. Pyramid decomposition based on deep learning is used 
by the authors in [27]. As a technology, deep learning is currently 
somewhat demanding. Visual tasks such as object recognition, picture 
segmentation, and image restoration all make use of deep learning. That 
research presents a CNN based approach to medical picture fusion. 
Using a Siamese network, they directly map source pictures to a weight 
map that include the integrated pixel activities information. The main 
advantage of that method is that it may bypass the problem of artificial 
design by combining the assessment of activity levels with weight 
assignment via the application of network learning. Adaptive fusion 
selection modes and multi-scale processing are two well-known picture 
fusion technologies that provide aesthetically pleasing results. Accord
ing to the findings of the experiments, the proposed approach has a high 
chance of producing satisfactory outcomes when it comes to both visual 
and subjective quality metrics. A multimodal fusion architecture is 
developed in [28] to distinguish between benign and malignant tumors 
using cropped B-mode and SE-mode ultrasound images of the lesion. The 
MFF is comprised of a decision-making network and an integrated 

feature analysis network. In contrast to previous recently published 
fusion strategies, the proposed MFF strategy has the ability to learn 
additional information from CNNs trained utilizing B-mode with SE- 
mode US pictures concurrently. Image classification is handled by DN 
with the use of CNN feature ensemble trained using the multimodal 
EmbraceNet model.. Radiologists’ ability to correctly classify breast 
cancer in US pictures might be improved by using the suggested strat
egy. In [29], a new fusion model that uses deep learning and optimal 
thresholding is proposed as a potential answer. Using fusion principles 
similar to those of the shearlet transform, an improved monarch but
terfly optimization finds the best threshold. The fusion rule is the pri
mary determinant of the fusion process efficiency, and enhancing the 
fusion rule’s performance is possible via optimization. Then, the deep 
learning method’s extraction component was used to combine the sub- 
bands of high and low frequencies. A CNN was used to perform the 
fusion procedure. Research was conducted using MRI and computed 
tomography scans. After achieving the fusion results, it was shown that 
the suggested model provides effective performance with decreased 
error values and enhanced correlation values. A trio of DNNs is used by 
the model proposed in [30–32]. To identify the most meaningful parts of 
images and text from an emotional perspective, two separate neural 
networks are suggested. Additional discriminative characteristics are 
collected to ensure precise emotion categorization. Then, with the help 
of a self-attention strategy, they provide a multichannel combination 
fusion method that uses the inherent relationship between visual and 
textual features to gather emotionally rich data for joint sentiment 
categorization. Lastly, a decision fusion approach is used to combine the 
outputs of the three classifiers, making the suggested model more robust 
and generalizable. To build a strong and explainable visual-textual 
sentiment categorization model, they use the Local Interpretable 
System-agnostic Explaining system. Their MMF model beats both state- 
of-the-art methodology and single-model approaches, according to 
model evaluation criteria. 

3. Problem statement 

The research community has intensively researched multimodality 
data fusion using ML approaches. At different points, multiple modal
ities may be combined in a number of ways. You may use ML approaches 
at any step of the fusion process, depending on the analytic goals. Early 
fusion is the simplest method as it combines normalized data from 
several modalities into one classification pool. Modeling the interactions 
between the modalities using extracting complementary information 
has been done using early fusion approaches such stepwise logistic 
regression analysis, Gaussian processes, and SVM-based kernels. 
Nevertheless, when faced with heterogeneous data, early fusion falls 
short because it overemphasizes one modality with many characteristics 
and ignores the others. A distinct approach, intermediate fusion chooses 
characteristics separately for each modality. The research community 
has intensively researched multimodality data fusion using ML ap
proaches. At different points, multiple modalities may be combined in a 
number of ways. You may use ML approaches at any step of the fusion 
process, depending on the analytic goals. Early fusion is the simplest 
method as it combines normalized data from several modalities into one 
classification pool. Modeling the interactions among the modalities and 
extracting complementary information has been done using early fusion 
approaches such stepwise logistic regression, Gaussian processes, and 
SVM-based kernels. Nevertheless, when faced with heterogeneous data, 
early fusion falls short because it overemphasizes one modality with 
many characteristics and ignores the others. An alternative approach, 
known as intermediate fusion, involves picking features separately for 
each modality, building a kernel-based matrix for every modality, and 
then merging them into a single fused matrix. Random Forest may also 
be used to create similarity matrices, which are then employed in the 
process of fusion. But these methods are sensitive to how various mo
dalities are weighted, and if you don’t give it some thought, you can end 
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up with subpar results. 

4. Proposed work 

Our innovative approach to fusing multimodal MRI as well as PET 
data takes into account key aspects that have been neglected in earlier 
research. To extract additional data for AD diagnosis while retaining the 
local structural information inherent to every modality, our suggested 
technique analyzes the inter with intra-modality relationships among 
PET and MRI. We also include a new relation called the Same-Subject 
Modalities-Interaction Matrices (SSIMI) to provide additional data that 
increases learning accuracy by enriching the training set. In order to 
make the most of the SSIMI communication, we suggest using an 
ensemble transfer learning framework to determine which features are 
best capable of capturing the highest amount of variance in a specific 
area using the data obtained from MRI and PET scans. At last, in order to 
reduce the computational expenses of the structure and identify useful 
biomarkers, we perform choosing features on the fused set. When using 
multimodality fusion to diagnose and track diseases, preprocessing im
ages from imaging modalities like PET and MRI is essential. Segmenta
tion of certain areas is made possible by registering PET pictures to their 
matching MRI scans. Disease categorization is made easier with the use 
of these segmented traits. Targeted localization is made possible by 
coordinating PET scans with MRI’s anatomical data. The SSIMI inter
action should be considered with intra- and inter-modality fusion. SSIMI 

delves at the ways in which two methods might interact with one other 
to capture the same area of a topic [33]. Examining this relationship may 
provide relevant and supplementary data that might enhance the pre
cision of illness categorization. Our strategy for dealing with this issue 
comprises: 

• To maintain the diverse structure of every information source, pro
cess as well as normalize each modality separately using Freesurfer.  

• For the same area and topic, build a new set using the relationships 
between the various modalities.  

• Merge all of the sets to boost learning efficiency.  
• Get the most out of your classification work by training numerous 

classifiers. 

In Fig. 1 we can see the structure of the approach that we have 
suggested. To isolate the most important aspects of PET and MRI data, 
we use attention-based transfer learning models. This is achieved by 
replacing the conventional FC layer with a set of networks that can 
extract spatial and semantic information at a high level: VGG-16, Den
seNet, SqueezeNet, as well as ResNet. In the end, the characteristics that 
have been learnt are combined and then sent to the SoftMax classifier to 
diagnose diseases. Here we will provide you the rundown on the rec
ommended technique [34]. 

Fig. 1. Proposed System Architecture.  
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4.1. MRI data acquisition 

The degree of brain shrinkage is a defining feature of the various AD 
phases. The use of volumetric MRI imaging methods allows for the 
detection of both global and regional changes in brain volume. In MRI, 
the proportion of bound to unbound molecules of water is used to 
magnify the variations in tissue matter. It is possible to quantify regional 
volumes because these ratios vary across various brain tissue types. T1 
weighted MRI, which measures how long it takes for the vector of net 
magnetization to go back to its original shape after being spun by an RF 
pulse, was used in this endeavor. The T1 durations of tissues are shorter 
when the ratio of bound to unbound fluid is greater. Because the brain’s 
tissue has a higher concentration of bound water than the cerebrospinal 
fluid (CSF) around it, a T1 picture will highlight this area. The primary 
raw MRI data set includes brain images acquired in successive slices that 
are aligned perpendicular to the transverse and coronal planes. Images 
were standardized to correspond to topology using an elastic warping 
technique, which preserves the morphological properties of an in
dividual’s brain [15]. Ventricular blood vessels, cerebrospinal fluid, and 
white and gray matter are separated from the original raw picture. After 
that, the image’s visible brain regions may be identified using auto
mated region interest (ROI) analysis, which enables the removal of skull- 
related areas and the computation of volumes for specified regions. 
Every side of the brain has fourteen of these regions identified, for a total 
of twenty-eight characteristics per picture. Prior to being used for clas
sifier training, the volumes associated with these 28 regions were 
normalized relative to total intracranial volume [35]. 

The data used to train MudNet was sourced from the Alzheimer’s 
disease, Neuroimaging Initiative (https://adni.loni. usc.edu/). The 
ADNI has collected a plethora of neuroimaging data from 1,821 subjects, 
including those with AD, moderate cognitive impairment (MCI), and 
controls with cognitively normal aging. This data includes results from 
MRI, PET, clinical assessments, and neurological tests. We used 559 
individuals’ baseline measurements as cross-sectional data to train 
MudNet. Clinical data, which comprised demographic information and 
outcomes from neurological assessments (ADAS-11, ADAS-13, ADASQ4, 
RAVLT, MMSE), in addition to structural MRI, were used. The data from 
all ADNI studies (namely ADNI1/GO/2/3) were amalgamated. 

Prepare MRI scans: There is an enormous feature space that contains 
all characteristics that might be useful for forecasting pMCI conversion. 
Considering that MRI scans have dimensions that are comparable to 256 
× 256 × 166, this means that each scan has 10, 878, 976 points of in
formation. Hence, more data preparation is needed to simplify the data 
and enhance the extraction of pertinent visual characteristics of the 
brain as it becomes increasingly degraded in order to apply deep 
learning to the issue. 1) Signing up: Utilizing the MNI-152 templates 
space, all of the abovementioned methodologies record their MRI brain 
pictures, as illustrated in Fig. 1. The Neurological Centre of Montréal 
developed the T1-weighted MNI-152 space by combining the MNI-305 
space with 152 normal MRI brain photos. The initial Talairach atlas 
has been superseded as the standard by the linearly documented MNI- 
152 template, according to the International Organization of Brain 
Mapping. 

Research that is relevant registers the brain in the MNI-152 space 
using ADNI MRI data. A voxel depicting 1 × 1 × 1 mm3 is provided by 
the registered pictures, which consist of 197 × 233 × 189 columns, 
rows, and slices. Because it enables the alignment of various brain re
gions, image registration is crucial for medical picture comparison. The 
pathological distinctions among sMCI and pMCI are better retained 
when paired non-linear techniques, such as affine with deformable 
transformations, are utilized. As a result, the spatial differences may be 
more precisely calculated using convolutional neural networks, which 
are capable of doing more exact spatial comparisons. 

Brain-stripping: Magnetic resonance imaging (MRI) pictures depict a 
complex feature space. We may decrease the number of characteristics 
required to forecast pMCI conversion from sMCI by removing 

extraneous features from this region, such the eyes and skull. Skull
stripping, the surgical removal of the brain and skull, is a frequent 
pretreatment step in all of the approaches used to investigate current 
methodologies. This is accomplished by using grey matter extraction in 
both the convolutional and deep residual approaches. Therefore, the 
classification issue can be more simply partitioned via brain extraction, 
as only the most significant characteristics remain in this area. Opti
mizing weights and propagating errors may then zero down on the 
spatial variations within these important characteristics, shortening the 
training period and boosting the model’s predictive power. 

4.2. PET image acquisition 

Different from magnetic resonance imaging (MRI), nuclear imaging 
methods like Positron Emission Tomography (PET) scan the body for 
gamma rays given off via a radioactive tracer which molecules with 
biological activity inject into it. Because fluorodeoxyglucose (FDG) is 
the chemical most often utilized for this usage, this imaging technique is 
also known as FDG-PET. In this investigation, FDG-PET pictures were 
taken around 30 min after an FDG injections and continued for another 
half an hour. The method from the Alzheimer’s Neuroimaging Initiative 
(ADNI) was used to do the imaging. Stereotactic surfaces projection, a 
method that has been shown to be very useful in the identification of 
Alzheimer’s disease, was used to evaluate these pictures. This research 
was carried out using Neurostat SSP, a computer program library, and 
the features used to train the classification algorithms were relative 
glucose rates for 43 designated regions of interest. 

In the first step, known as Intensity Redistribution, the input pic
tures’ pixel intensity values are normalized to a fixed value. In this stage, 
a normalized intensity is formed by aggregating the intensities of those 
neighbors that are most comparable. “Dynamic Intensity Specific Vari
ance” is suggested as a means of standardizing intensities in this study. 

It is discovered that the input image’s pixel intensities are dispersed. 
Magnetic resonance imaging (MRI) scans of the brain show three distinct 
types of tissue at varying intensities: the cerebrospinal fluid, gray mat
ter, and white matter. 

In = {In1, In2, In3} (1) 

The dissimilarity between various levels of intensity is expressed as, 

dif1,2 = In1 − In2 (2)  

dif2,3 = In2 − In3 (3)  

dif1,3 = In1 − In3 (4) 

An expression that expresses the intensity-specific variability 
weights to a limited value is, 

WISV = 23×s(dif1,2)+s(dif2,3)+s(dif1,3) (5)  

s(z) =

⎧
⎨

⎩

0, z > 0
1, z < 0
2, z = 0

(6) 

The weight proportional to changes in intensity difference may also 
be calculated in a similar way, 

WIDV = 22− s(dif1,2)− s(dif2,3)− s(dif1,3) (7) 

In order to calculate the ISV metric, one may use the following 
equations, which are expressed as, 

ISV(In) = WISV × WIDV (8) 

This ISV measure is image-independent and adapts to new inputs. 
Next, we do Image Quantization to reduce the image’s intensity values 
to a minimum. This is the part where we check the connection between 
the two pixels. It applies quantization based on the dissimilarity distance 
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between pixels. It is possible to express the function of relationships 
between the nodes as, 

R = {R i|∀i ∈ L } (9) 

Where, L indicated the grid where the pixels are located. An 
expression for the separation of the two pixels is, 

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(q2(i, j) − q1(i, j))2
+ (p2(i, j) − p1(i, j))2

√

(10) 

Where (p1(i, j), q1(i, j)) and (p2(i, j), q2(i, j)) serve as the two pixels’ 
coordinates, correspondingly. A new intensity is generated by 
substituting the center values for the intensity values. The intensities of 
pixel prior to and following normalization are shown in Fig. 2 (a) and 
(b).(See Figs. 3–7). 

4.3. Multimodal techniques 

In this case, the suggested architecture uses four convolutional 
neural networks (CNNs) to extract the main characteristics of the fusion 
image: VGG 19, ResNet 50,SqueezeNet, as well as DenseNet 121. 

4.3.1. VGG 
The structure of the visual geometry group is highly organized. The 

input image’s size is reduced as the network is trained deeper; never
theless, the explanation for this phenomenon is the continuous increase 
in the total number of convolution kernels. To improve the network’s 
depth and breadth, a large number of 3 × 3 kernels with convolution are 
used to substitute the macrokernels. Therefore, the recognition capacity 
of the classification job and the richness of the recovered features are 
both enhanced by increasing the amount of activation functions. 

4.3.2. SqueezeNet 
SqueezeNet uses a large number of 1 × 1 kernels instead of a 3 × 3 

convolution kernels to speed up CNN training and decrease computing 
cost, similar to AlexNet’s findings on the ImageNet data set. The net
work’s small size and great efficiency make it ideal for large-scale 
datasets. 

4.3.3. ResNet 
In contrast to VGG, ResNet addresses the deep network degradation 

issue by establishing connections between successive layers based on 
residuals of feature mapping. By addressing ill-posed challenges, re
searchers may train deeper neural networks to better represent tasks. 

4.3.4. DenseNet 
Based on ResNet’s idea, DenseNet achieves dense skip connections 

by connecting one layer to all following levels by skipping connections. 

As the architecture is refined further, DenseNet’s internal representation 
diverges greatly from ResNets. 

Starting with the supplied feature map Xin ∈ RH×W×C proceeds to a 
1 × 1 convolutional layer that for the purpose of extracting local features 
and adjusting the dimensionality to align with the subsequent layer. This 
layer’s output is X1 ∈ RH×W×Cʹ, where the original image’s resolution (H, 
W), the total number of initial features (C), and the amount of convo
luted dimensions (C^’) are all variables. 

Following that, we execute a patch embedding procedure that in
volves altering the picture and compressing the image patches. A series 
of N flattened 2D patches is created using the reshaped feature map X_1 
Xi

p (Equation (11): 

Xi
p = P × P × C, i ∈ {1,2,⋯,N} (11) 

N = H × W/P2 generates the total of all image patches, assuming that 
each picture patch has a resolution of (P,P). The space of embedding 
having D dimensions is created by Xp^i and an adaptive linear pro
jections for the MLP layer, as seen in Eq. (12). 

X2 =
[
X1

PE;X2
PE;⋯;XN

P E
]
+Epos(2) (12)  

where X2 is the series of encoded images. 
Equations (13), 14, the third step, involves transferring the processed 

information from sequence X2 into the MLP layer. 

X2ʹ = Dropout (Gelu(FC(X2)) (13)  

X3 = Dropout (FC(Xʹ) ) (14)  

where the activation functions Gelu and Dropout are used to enhance 
training accuracy and avoid network overfitting. A fully connected 
layer, FC reduces the two-dimensional feature map’s convolution output 
to a one-dimensional vector. 

Once the MLP level is finished, the output is reorganized to match the 
original dimensions of the input picture Xout ∈ RH×W×C (Eq. (15), as 
well as a classifier makes a prediction about the glaucoma group. 

Xout = rearrange (X3, (hw)(p1p2c)→c(hp1)(wp2)) (15) 

For automated classification, a decision-fusion strategy based on 
ensembles of classifiers was used. To create an ensemble-based system, it 
is necessary to combine a number of various classifiers. In most cases, 
the training parameters used to train each classifier are varied. If variety 
is enough, each classifier will make a unique mistake, which, when 
strategically combined, may lower the overall error. Many methods exist 
for achieving this variety, such as using various subset of the training 
information acquired by resampling, varying the settings of a classifier 
approach, employing many classifiers together, or utilizing distinct 
subsets of the characteristics included within the provided dataset. 

Fig. 2. (a) the intensity of the pixels before to normalizing, and the intensity of the pixels subsequent to normalization.  
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Random subspace analysis is the name given to the second one. To get a 
final conclusion, an ensemble based approach combines the results from 
individual classifiers, which is similar to a decision fusion strategy. 
Compared to a system based on a single classifier, the objective is to 
achieve better generalization performance. On the other hand, data 
fusion applications, which mix data from several sources, are a perfect 

Fig. 3. Features Extraction using Ensemble Transfer Learning.  

Fig. 4. Error Rate vs. No of Epochs.  

Fig. 5. SSIM vs. Noise Level.  
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fit for this approach’s structure. When using data fusion applications, 
the aim is to make better decisions overall than when using only one 
source of data. The ensemble method is easy to implement in a data 
fusion setting: just train a different classifier on every set of data that 
originates from a different source, and then mix them using a suitable 
combination algorithm. For the sake of this research, we will be using an 
ensemble of classifiers for both data fusion and enhancing accuracy over 
a single classification algorithm, thereby combining the two applica
tions of ensemble systems. Basically, we get three “experts” (one for 
Alzheimer’s Disease data, one for MRI data, and one for PET data) by 
training a group of classifiers for every kind of data. Next, we merge 
these classifier ensembles to accomplish MRI, and PET data fusion by 
decision fusion. In order to better diagnose Alzheimer’s disease, we want 
to determine whether these various methods provide further informa
tion. This overarching method is shown in Fig. 2. 

Several combination rules are available for use once each of the 
classifiers have been produced. Among them, the majority of voting rule 
and the sum rule are perhaps the most utilized. We may say that the i^th 
classifier’s choice is di,j ∈ {0,1}Ei = 1,⋯, L and j = 1,⋯,c, such that c =
number of classes and L = number of classifiers. If ith d_ij = 1 if class j is 
selected by the classifier, and zero otherwise. To implement majority 
voting, we first determine the general approval of S_j for class J by 
tallying up all of the votes, and then we choose the ensemble choice 
based on that. 

Sj(x) =
∑L

i=1
di,j(x), di,j(x) ∈ {0,1} (16) 

then declare victory to the class that garners the most votes. Another 
option is to utilize the sum rule to combine classifiers. This is effective 
when classifiers can offer continuous outputs for every class, signifying 
the support the class receives. After that, we total jointly every one of the 
class J outputs to determine the general backing for class J. Next, the 
class with the most total support will be chosen. 

SJ(x) =
∑L

i=1
di,j(x), di,J(x) ∈ [0,1] (17)    

1) Rectified Linear Unit (RELU) 

The goal of constructing convolutional neural networks out of the 
spatially structured perceptrons is to mimic brain function. Brain sig
nals, which allow for thought and action, are the result of a complicated 
interaction between neuronal activations. Since the Rectified Linear 
Unit prevents the vanishing gradient issue that plagues many deep- 
layered network designs, it is the activation feature of choice for many 
CNN models. Activation functions’ differentiability is crucial for back
propagation of error, which involves adjusting the weights to an opti
mum value. Because of its gradient, the sigmoid function is problematic 
when used; its partial derivatives of the error with respect to the weights 
determine the update to the current weights. As a result of layer-by-layer 
reductions, the model may stop updating its weights altogether. By 
maintaining a greater and more consistent gradient than the maximum 
sigmoid gradient, RELU, as a ramp function, mitigates the vanishing 
gradient issue. Quicker convergence is another feature of RELU (22). All 
of the proposed models in this technique (ELU) employ RELU or a 
variation thereof, which is not surprising.  

2) Batch Normalisation 

The majority of the aforementioned techniques use batch normali
zation on the output of the convolutional layers. The all convolutional 
technique, which had the lowest accuracy, didn’t apply batch normal
isation, which might explain why it wasn’t as effective as other methods. 

Many methods for ensemble learning have been created and studied 
within the domain of semisupervised learning. This approach aims to 
strengthen machine learning by merging many weak learners into one 
stronger one. Regarding instance-based ensemble transfer learning, 
however, very few proposals have been made for such a harmonic 
combination of several feature representations. Finding a way to suc
cessfully merge several weak student populations into a stronger one 
remains a significant issue for researchers in our field. To achieve this, 
we provide a new weighting method that optimizes the integration ef
ficiency of the separate models on various feature representations. This 
scheme combines mutual information with weak learners to create a 
stronger learner. One of the most crucial aspects of ensemble learning 
for optimizing the model is learning how to weight the parameters. The 
mean achievement of every student in a conventional ensemble may be 
used to create the final ensemble learner. The weighting mechanism we 
suggest in our study may be expressed as (18) below, where y is the 
anticipated label vector from the ensemble learner. 

y =
∑m

i=1
exp

(
w*

i
)
ϕi[Fi(x)] (18) 

In the method above, w*
i represents the weighted vector that has been 

normalized and which meets the conditions given by (19). 

w*
i =

wi
∑m

i=1wi
(19) 

Assuming a vector representing a predictability yi of the case xi, what 
is ultimately expected to be the instance’s class label Y*

Ti
=

arg max
k

(
y(k)

i

)
. As there are n the assignment requires categorizing 

Fig. 6. PSNR vs. Noise Level.  

Fig. 7. Accuracy vs. Epochs.  
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various face expressions, the spectrum of k is {1,2,⋯,n}. Theoretically, 
this ensemble learning method is comparable to Yang’s weighted clus
tering ensemble approaches. Additionally, each MI value is bigger than 
0 since all of them are computed in (1) w*

i also exceeds zero. We next 
exhibit each weak leaner using an exponentially weighted strategy, as 
opposed to a linear weighting one. Then, the worth of exp 

(
w*

i
)

not 
equal to 1. At some point, the projected outcomes taught by a stronger 
weak learner take on more significance. 

5. Results & discussion 

5.1. Experiment and discussion 

Our study’s experimental setup is described in this section. After
wards, our architecture’s efficacy is shown via four trials. In the end, the 
findings are presented and examined thoroughly. The proposed 
approach employs four pre-trained models, specifically VGG 19, ResNet 
50,SqueezeNet, as well as DenseNet 121 are computed and compared 
with the Ensemble Transfer Learning architecture. Using a dataset of ISL 
images, the pre-trained models are fine-tuned. Subsequently, the 
ensemble learning technique is employed to combine the predictions 
generated by the three models. Here, ensemble is based on a weighted 
voting method. The performance of the proposed framework has been 
quantitatively analyzed on multiple evaluation parameters to demon
strate its effectiveness for multimodal medical fusion and classification. 

5.2. Experimental setup 

Our dedicated server, powered by a NVIDIA graphics card with a 
GeForce RTX 2060Ti GPU and equipped with 16 GB of RAM, runs every 
single test. The experimental framework is PyTorch, the programming 
language is Python, and the compiler is PyCharm. 

The parameters of the suggested architecture are updated using the 
adaptive momentum estimating (Adam) optimizer in this study. The rate 
at which learning occurs is set to 0.0001, and the loss function is tuned to 
CrossEntropy Loss. With a value of 8, we’ve configured the batch size 
with epochs. 

We use the accuracy, Kappa score, Jaccard score, recall, as well as F1 
score to assess the efficacy of the given methodologies. The accuracy of a 
sample is defined as the percentage of the whole sample that is the ac
curate number. The percentage of positive samples that were actually 
anticipated to be positive is called recall. You may get the F1 score by 
dividing recall by accuracy. The Jaccard score is used to measure how 
similar or diverse a sample is. We use the Kappa score, which quantifies 
the degree to which actual and predicted classification results are 
consistent, to evaluate the performance of multi classification systems. 

Precision =
TP

TP + FP
(20)  

Recall =
TP

TP + FN
(21)  

Jaccard Score =
TP

TP + FP + FN
(22)  

F1 Score =
2 • precisionerecall
precision + recall

(23)  

Accuracy =
TP + TN

TP + TN + FP + FN
(24)  

Pe =
(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

(TP + TN + FP + FN)
2 (25)  

Kappa Score =
Accuracy − Pe

1 − Pe
(26) 

the number of images that the categorization algorithm accurately 
identified, denoted as TP: FN stands for “false negative,” which indicates 
how many pictures the algorithm mislabeled as belonging to certain 
categories; If TN is true negative, the classification technique correctly 
uses these categories to store non-category photographs; however, when 
FP is false-positive, it uses these categories incorrectly. 

The suggested approach should not only be evaluated using traintest- 
split as well as cross-validation, but also on unseen data, especially data 
collected under diverse situations and with different procedures, to 
ensure it can generalize. We outperformed state-of-the-art approaches in 
terms of accuracy, precision, recall, along with F1-score, which bodes 
well for the future. Nevertheless, there are a few restrictions on our 
architecture. To start, we simply used two modalities—MRI and PET—to 
improve learning performance and classification accuracy. Additionally, 
PET segmentation alone, rather than relying on MRI segmentation, may 
improve classification accuracy. In addition, each data source should be 
treated independently since merging MRI with PET sets will affect the 
intra-relations. To get better classification results in the end, we used 
hyper-parameter tuning techniques during training and manually 
picked the parameters based on validation methods. It is also worth 
mentioning that the dataset utilized in this research was somewhat 
unbalanced and tiny in size. Despite using accuracy, specificity, recall, 
F1-score, as well as AUC to assess the learning models’ efficacy, more 
effort is necessary to address the data’s small size and imbalance. By 
using hyper-parameter tuning approaches, including the attention- 
based transfer learning technique, during training, we were able to 
enhance the final classification results, which were achieved by manual 
parameter selection for validation methods. It is also worth mentioning 
that the dataset utilized in this research was somewhat unbalanced and 
tiny in size. Despite using accuracy, specificity, recall, F1-score, as well 
as AUC to assess the learning models’ efficacy, more effort is necessary 
to address the data’s small size and imbalance. 

6. Conclusion 

In conclusion, our study demonstrates the efficacy of combining MRI 
and PET scans with attention-based transfer learning frameworks for 
more accurate classification of Alzheimer’s disease (AD). By employing 
various evaluation metrics such as F1-score, AUC, recall, accuracy, 
precision, and specificity, along with rigorous validation techniques like 
train-test-split and cross-validation, we validated the robustness of our 
methodology. The results exhibited a significant improvement, partic
ularly evident in the notable enhancement of classification accuracy. 
Notably, our research stands out due to its utilization of a larger sample 
size and a fusion framework that simultaneously considers all three 
modalities’ relationships, setting a precedent for addressing similar 
classification challenges. 

However, our study is not without limitations. We acknowledge the 
need for further exploration into incorporating demographic data and 
integrating gene expression data with MRI and PET scans to enhance 
learning performance. Additionally, we aim to refine intra-relationship 
modeling through non-linear graph modeling and augment the infor
mation extracted from PET measurements across various areas. More
over, we recognize the potential of exploring advanced computer vision 
algorithms to leverage voxel characteristics and enhance diagnostic 
capabilities. 

Moving forward, our future research endeavors will focus on 
addressing these limitations and expanding the scope of our methodol
ogy. Specifically, we intend to explore SSMI as a promising avenue for 
multi-class classification tasks in AD patient classification. Additionally, 
devising novel strategies for oversampling minority classes to address 
data imbalance in medical imaging datasets will be crucial. By priori
tizing both accuracy and sensitivity in oversampling techniques, we aim 
to maintain the reliability of our classification model while ensuring its 
applicability in clinical settings. Overall, our findings pave the way for 
further advancements in AD classification and underscore the potential 
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of multimodal imaging and transfer learning in medical diagnosis. 
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learning with transposed convolution for image fusion Alzheimer’s disease 
classification, Brain Sci. 13 (2023). 

[17] Sangeetha Francelin Vinnarasi, F., Daniel, J., Anita Rose, J.T., & Pugalenthi, R. 
(2021). Deep learning supported disease detection with multi-modality image 
fusion. Journal of X-ray science and technology. 

[18] Yuvasri (2021). Deep Learning based Automatic Brain Tumor Analysis using 
Multimodal Fusion. 

[19] S.G. Sandhya, M. Senthil Kumar, Automated multimodal fusion based 
hyperparameter tuned deep learning model for brain tumor diagnosis, J. Med. 
Imaging Health Inform. (2022). 

[20] R. Yan, F. Zhang, X. Rao, Z. Lv, J. Li, L. Zhang, S. Liang, Y. Li, F. Ren, C. Zheng, 
J. Liang, Richer fusion network for breast cancer classification based on 
multimodal data, BMC Med. Inf. Decis. Making 21 (2021). 

[21] Azmat, M., & Alessio, A.M. (2022). Feature Importance Estimation Using Gradient 
Based Method for Multimodal Fused Neural Networks. 2022 IEEE Nuclear Science 
Symposium and Medical Imaging Conference (NSS/MIC), 1-5. 

[22] Naglah, A., Khalifa, F., Khaled, R., Razek, A.A., & El-Baz, A.S. (2021). Thyroid 
Cancer Computer-Aided Diagnosis System using MRI-Based Multi-Input CNN 
Model. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 
1691-1694. 

[23] Anandhi, D.F., & Sathiamoorthy, S. (2023). Enhanced Sea Horse Optimization with 
Deep Learning-based Multimodal Fusion Technique for Rice Plant Disease 
Segmentation and Classification. Engineering, Technology & Applied Science 
Research. 

[24] M. Bihler, L. Roming, Y. Jiang, A.J. Afifi, J. Aderhold, D. Čibiraitė-Lukenskienė, 
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